PREPARATION OF THE SIMPLEST Δ^1 -PYRAZOLINES BY ISOMERIZATION OF Δ^2 -PYRAZOLINES

B. V. Ioffe and N. B. Burmanova

 Δ^2 -Pyrazolines that do not have substituents in the 1- and 3-positions are not capable of isomerization to 3-substituted pyrazolines and can be converted to Δ^1 -pyrazolines by slow distillation in the presence of bases. This method, which is completely analogous to the synthesis of azo compounds from alkylhydrazones, gives good results when applied to 4- alkyl- and 5,5-dialkyl- Δ^2 -pyrazolines and makes it possible to obtain the corresponding Δ^1 -pyrazolines in yields of 40-70%. 4-Ethyl-, 5-methyl-5-ethyl-, and 5,5-diethyl- Δ^1 -pyrazolines are described for the first time.

In 1963 in our laboratory we observed that 5,5-dimethyl- Δ^2 -pyrazoline is converted to the Δ^1 -isomer during distillation with a rectification column at atmospheric pressure [1]. It was subsequently shown [2-4] that acyclic analogs of Δ^2 -pyrazolines – monosubstituted hydrazones of aldehydes and ketones that are isomerized to the corresponding azo compounds on distillation over alkalis – undergo a similar transformation. This sort of isomerization may serve as a convenient method for the synthesis of various aliphatic and aliphatic-aromatic azo compounds [3, 4]. In this connection, it seemed of considerable interest to ascertain the possibilities of using the migration of the azomethine bond for the synthesis of cyclic azo compounds, particularly Δ^1 -pyrazolines. Cases of reverse isomerization, viz., the facile, and, from time to time, spontaneous conversion of Δ^1 -pyrazolines to the Δ^2 -isomers (see [5], for example), are well known. The conversion of Δ^2 -pyrazolines [6] and in the isomeric transformations of 5-substituted Δ^2 -pyrazolines to the 3-substituted isomers [7, 8], but there was no direct experimental confirmation of the $\Delta^2 \rightarrow \Delta^1$ transition before the appearance of [1].

We have set up experiments involving the isomerization of Δ^2 -pyrazolines with different numbers and positions of the alkyl substituent under the catalytic influence of potassium tert-butoxide (1%) during slow vacuum distillation with a column (15 theoretical plates) at 70-90°. It turned out that 5,5-dialkyl substituted Δ^1 -pyrazolines, for the simplest representatives of which this transformation was first noted [1], are formed most readily and smoothly under these conditions. Good yields of the corresponding Δ^1 -pyrazolines were also obtained from 4-alkyl- Δ^2 -pyrazolines (see Table 1). The isomerization of 3-alkyl-substituted Δ^2 -pyrazolines, however, did not occur under these conditions because of the much higher thermodynamic stability of these isomers and their lower rate of isomerization.

A fraction containing 78% of the Δ^1 -isomer was isolated by distillation of 5-methyl- Δ^2 -pyrazoline over potassium tert-butoxide, but it could not be freed of the starting 5-methyl-isomer and the 3-methyl- Δ^2 -isomer formed in the process.

Thus, according to our data, the preparative possibilities of the use of the isomerization of Δ^2 pyrazolines to obtain Δ^1 -pyrazolines is restricted to the cases of 4-substituted and 5,5-disubstituted Δ^2 pyrazolines, i.e., Δ^2 -pyrazolines whose structure excludes the formation of the most stable 3-substituted Δ^2 pyrazolines under the reaction conditions.

A.A. Zhdanov Leningrad State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 956-957, July, 1971. Original article submitted December 22, 1970.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

, Yield,		70 70 52
Purity,		95 94 94
N, %	calc.	28,5 28,5 22,2 22,2
	found	33,0; 32,9 28,2; 28,1 25,2; 25,3 22,4; 22,3
Empirical formula		С ₄ Н ₈ N ₂ С ₅ Н ₁₀ N ₂ С ₅ Н ₁₄ N ₂ С ₇ Н ₁₄ N ₂
d A	ound calc. ^a	24,56 29,20 33,85 38,50
IW	found	23,76 28,78 33,05 37,63
r T		$\begin{array}{c} 319 \\ 320 \\ 320 \\ 320 \\ 324 \\ (170) \\ 324 \\ (60) \end{array}$
$v_{N=N}$, cm ⁻¹		1580 1560 1560 1561
0FCD		20,6 20,1 19,8 20,1
$\Delta_F c^{20}$		90,4 90,0 87,7 91,5
n c ²⁰		1,4348 1,4428 1,4415 1,4527
n D ²⁰		1,4374 1,4459 1,4440 1,4552
d_{1}^{20}		0,9280 0,9089 0,9017 0,9102
(uuu) dq		$\begin{array}{c} 42.0-44.5 (25) \\ 72-74 (40) \\ 76.5-78.5 (40) \\ 48.5-49.5 (5) \end{array}$
Иате		4-Methyl-∆ ¹ -pyrazoline ^d 4-Ethyl-∆ ¹ -pyrazoline 5-Methyl-5-ethyl-∆'-pyrazoline 5.5-Diethyl-∆ ¹ -pyrazoline

TABLE 1. Δ^1 -Pyrazolines Obtained by the Isomerization of Δ^2 -Pyrazolines

^bIn alcohol solutions (data of O. V. Sverdlova). ^cFrom gas-liquid chromatographic data [9].

^aFrom the Vogel bond refractions.

^dThis pyrazoline was obtained in [12] by the oxidation of pyrazolidine but was not characterized.

EXPERIMENTAL

For this work, we used Δ^2 -pyrazolines, prepared by slow addition of the appropriate carbonyl compound to an equimolar amount of hydrazine hydrate, previously described in [9]. The 5.5-dialkyl- Δ^2 -pyrazolines were obtained by the condensation of tertiary acetylenic chlorides with anhydrous hydrazine [10].

Isomerization of Δ^2 -Pyrazolines. This was carried out, after the addition of 1% potassium tert-butoxide, by means of slow distillation of the volatile fractions under nitrogen at reduced pressure at 70-90° with a Vigreaux column with a metric dephlegmator. The distillate, which was enriched in the Δ^1 -isomer, was then distilled with the same column in vacuo without a catalyst. The pure Δ^1 pyrazolines (Table 1) obtained in this way were yellowish, mobile liquids with boiling points lower than those of the corresponding Δ^2 isomers. The IR spectra contained a band of the valence vibrations of the N = N group at ~1560 cm⁻¹, and the band of the valence vibrations of the NH group at 3270-3305 cm⁻¹ was absent [11].

The long-wave absorption bands in the UV with λ_{\max} 319-324 nm are characteristic for the azo group and are an additional proof of the Δ^1 -structure. The molecular refractions were less than those calculated for the Δ^1 -pyrazolines by 0.42-0.87 ml/mole. which attests to considerably lower refraction of the N = N bond in the syn configuration as compared with the anti-azo compounds, on the basis of which the additive constants available in the literature were calculated.

LITERATURE CITED

- B. V. Ioffe and D. D. Tsitovich, Khim. Geterotsikl. Soedin., 1. 559 (1965).
- B. V. Ioffe, Z. I. Sergeeva, and V. S. Stopskii, Dokl. Akad. 2. Nauk, SSSR, 167, 83 (1966); USSR Author's Certificate No. 174,188 (1965); Byull. Izobr., No. 17 (1965).
- 3. B. V. Ioffe and V. S. Stopskii, Dokl. Akad. Nauk SSSR, 175, 1064 (1967).
- B. V. Ioffe and L. M. Gershtein, Zh. Organ. Khim., 5, 268 4. (1969).
- K. Auwers and O. Ungemach, Ber., 66, 1198 (1933). 5.
- 6. W. H. Jones, J. Am. Chem. Soc., 80, 6687 (1958).
- 7. I. I. Grandberg, Zh. Obshch. Khim., 31, 2605 (1961).
- 8. J. Elguero and R. Jacquier, Bull. Soc. Chim. France, 749 (1965).
- B. V. Ioffe and N. B. Burmanova, Khim. Geterotsikl. Soedin. 9. (1971) (in press).
- B. V. Ioffe and D. D. Tsitovich, Dokl. Akad. Nauk SSSR, 155, 10. 1348 (1964).
- B. V. Ioffe, Khim. Geterotsikl. Soedin., 1089 (1968). 11.
- R. J. Crawford, R. J. Dummel, and A. Mishra, J. Am. Chem. 12. Soc., 87, 3023 (1965).